|本期目录/Table of Contents|

一类多重联图的邻点可区别E-全染色(PDF)

《纯粹数学与应用数学》[ISSN:1008-5513/CN:61-1240/O1]

期数:
2010年01期
页码:
36
栏目:
出版日期:
2010-01-15

文章信息/Info

Title:
Adjacent vertex-distinguishing E-total coloring on a class of the multiple join graphs
作者:
李沐春 张忠辅
(兰州交通大学数理与软件工程学院, 甘肃兰州730070)
Author(s):
LI Mu-chun ZHANG Zhong-fu
(College of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
关键词:
重联图 邻点可区别E-全色数
Keywords:
Star Path Circle the multiple join graph adjacent vertex-distinguishing E-total chromatic numbe
分类号:
O157.5
DOI:
-
文献标识码:
A
摘要:
设G(V;E)是一个简单图, k是一个正整数, f是一个V (G)[E(G)到f1; 2; ¢ ¢ ¢ ; kg的 映射. 如果8u; v 2 E(G), 则f(u) 6= f(v); f(u) 6= f(uv); f(v) 6= f(uv);C(u) 6= C(v), 其中C(u) = ff(u)g [ ff(uv)juv 2 E(G)g. 称f 是图G的邻点可区别E-全染色, 称最 小的数k为图G的邻点可区别E-全色数. 本文给出了星、路、圈间的多重联图的邻点可 区别E-全色数.
Abstract:
Let G(V;E) be a simple graph, k be a positive integer, f be a mapping from V (G) [ E(G) to f1; 2; ¢ ¢ ¢ ; kg. If 8uv 2 E(G), we have f(u) 6= f(v); f(u) 6= f(uv); f(v) 6= f(uv);C(u) 6= C(v), where C(u) = ff(u)g [ ff(uv)juv 2 E(G)g. Then f is called the adjacent vertex-distinguishing E-total coloring . The minimal number of k is called the adjacent vertex-distinguishing E-total chromatic number of G. The adjacent vertex-distinguishing E-total chromatic number of the multiple join graph of star, path and circle are obtained in this paper.

参考文献/References

-

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2010-01-15