|本期目录/Table of Contents|

ND 阵列加权乘积和的完全收敛性(PDF)

《纯粹数学与应用数学》[ISSN:1008-5513/CN:61-1240/O1]

期数:
2010年01期
页码:
84
栏目:
出版日期:
2010-01-15

文章信息/Info

Title:
Complete convergence for weighted sums of arrays of ND random variables
作者:
孟兵 吴群英
(桂林理工大学理学院, 广西桂林541004)
Author(s):
MENG Bing WU Qun-ying
(Department of Mathematics and Physics, Guilin University of Technology, Guilin 541004, China)
关键词:
行间ND阵列 加权乘积和 完全收敛性 正则变化函数 慢变函数
Keywords:
array of rowwise ND random variables weighted product sum complete convergence regular varying function slowing varying function
分类号:
O178
DOI:
-
文献标识码:
A
摘要:
:设fXni : 1 · i · n; n ? 1g为行间ND阵列, g(x)是R+上指数为?的正则变化函 数, fani : 1 · i · n; n ? 1g为满足条件max 1·i·n janij = o?(g(n))?1 ¢的实数阵列. 本文采 用截尾的方法, 得到了使ND 随机变量阵列加权乘积和完全收敛的条件, 并推广了以前 学者的结论.
Abstract:
Let fXni : 1 · i · n; n ? 1g be an array of rowwise ND random variables,and let g(x) be a regular function with index ?. Let fani : 1 · i · n; n ? 1g be an array of real numbers satisfying max1·j·n janij = o?(g(n))?1 ¢. In this paper, it is taken advantage of truncation, a set of su±cient conditions such that complete convergence for weighted sums of arrays of ND random variables are obtained.The well-known results by before scholars are extended.

参考文献/References

-

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2010-01-15