|本期目录/Table of Contents|

SL(2k, C)中两类特殊可解子群的结构及其 在Fuchs系统中的应用(PDF)

《纯粹数学与应用数学》[ISSN:1008-5513/CN:61-1240/O1]

期数:
2010年01期
页码:
164
栏目:
出版日期:
2010-01-15

文章信息/Info

Title:
Two classes of solvable subgroups of SL(2k,C) and application in Fuchsian system
作者:
李慧珍1 张绍飞2
(1.装甲兵工程学院基础部数学室, 北京100072; 2.北京航空航天大学数学与系统科学学院, 北京100191)
Author(s):
LI Hui-zhen 1 ZHANG Shao-fei 2
(1.Department of Fundamental Courses, Academy of Armored Force Engineering, Beijing 100072, China; 2.School of Mathematics and Systems Science, Beijing University of Aeronautics and Astronautics, Beijing 100191, China)
关键词:
Fuchs 系统 单值群 特殊线性群 可解群 可积性
Keywords:
Fuchsian system monodromy group special linear group solvable group integrability
分类号:
O152
DOI:
-
文献标识码:
A
摘要:
利用SL(2;C) 中可解子群的结构, 给出了SL(2k;C) 中两类特殊的具有两个生成 元的可解子群的结构定理. 由单值群的可解性与Fuchs 系统可积性之间的关系, 研究对 应的单值群是可解的环面上只有一个正则奇点的2k 阶Fuchs 方程的解Riemann 曲面结 构, 进而研究其解的大范围性质.
Abstract:
Based on the structure of solvable subgroup in SL(2;C), structure theorems of two classes of solvable subgroups generated by two elements in SL(2k;C) were given. By the relation between the solvability of monodromy group and the integrability of Fuchsian system, the structure of the Riemann surfaces of solutions of the 2k-order Fuchsian equation on torus with a solvable monodromy group were discussed, and some global properties of the system's solution were discussed.

参考文献/References

-

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2010-01-15